LogoLogo
Terminal
  • Attic Lab
  • Getting Started
  • Crest Gold
  • Crest Silver
  • Videos on Computation
  • PI PICO (CIRCUITPYTHON)
    • Getting Started
    • Pin Out Diagram
    • Breadboards
    • 1. Led Blink
    • 2. RGB
    • 3. OLED
    • 4. Sensors
    • 5. Wifi
    • 6. Servos
  • Arduino
    • Getting Started
    • Pin Out Diagrams
      • Mega2560 R3
    • Programming
      • Arduino C - Cheat Sheet
    • Buttons
      • Momentary Switches
    • Display
      • LEDs
      • 7 Segment Displays
      • LCD Displays (GPIO)
      • LCD Displays (SPI)
      • OLEDs
    • Communication
      • Antenna Theory
      • Lora
      • Wifi
        • Boards
    • Project Ideas
    • Motion
      • DC Motors
      • Servo Motors
      • Stepper Motors
  • Microsoft Office
    • Word
    • Powerpoint
    • Excel
  • The Terminal
    • Basics
    • Cheat Sheet
    • Games
      • Level 1 - Bashcrawl
      • Level 2 - Bandit
  • TinkerCad
    • Gallery
    • Getting Started
    • Basic Operations
    • Basic Skills
    • Projects
      • Locking Container
  • Python
    • Hello World
    • Turtle Graphics
      • Strings in Turtle Graphics
      • Cheat Sheet
    • Variables
    • Loops
    • If Statements
    • Functions
    • Games
      • Pong
  • Raspberry Pi
    • Setup
      • Changing The Hostname
      • Headless Setup
      • Kiosk Mode
    • Remote Connections
    • Displays
      • Memory
        • External HD
      • HyperPixel 4.0
  • Ultimaker 3D Printing
    • The Thingiverse
    • Preparing the File
    • Printing
    • Calibration Prints
    • Print Set
  • Fusion 360
    • Getting Started
    • Design Tutorials
      • Tweezers
      • Mars Rover Wheel
    • Surface Modeling
  • Electronics
    • References
    • Antenna Theory
    • LoRa
  • PCB Milling
    • FlatCam
    • Candle
    • PCB Milling
  • Projects
  • Projects
    • Star Map Necklace
    • Ideas Respository
  • Latex
    • What is LaTeX?
    • Getting Started
    • Structure
    • Page Size & Margins
    • Styling
    • Images
    • Lists
    • Tables
    • Mathematics
      • Superscript and Subscripts
      • List of Symbols
      • Fractions and Binomials
      • Integrals, Sums & Limits
    • Colors
  • Web Development
    • The Internet
    • Intro to HTML
    • Basic Elements
    • Basic Styling
Powered by GitBook
On this page
  • Basic Circuit
  • Schematic
  • Code
  • Further Reading

Was this helpful?

  1. Arduino
  2. Buttons

Momentary Switches

PreviousButtonsNextDisplay

Last updated 4 years ago

Was this helpful?

Basic Circuit

Connect three wires to the board. The first two, red and black, connect to the two long vertical rows on the side of the breadboard to provide access to the 5 volt supply and ground. The third wire goes from digital pin 2 to one leg of the pushbutton. That same leg of the button connects through a pull-down resistor (here 10K ohm) to ground. The other leg of the button connects to the 5 volt supply.

When the pushbutton is open (unpressed) there is no connection between the two legs of the pushbutton, so the pin is connected to ground (through the pull-down resistor) and we read a LOW. When the button is closed (pressed), it makes a connection between its two legs, connecting the pin to 5 volts, so that we read a HIGH.

You can also wire this circuit the opposite way, with a pullup resistor keeping the input HIGH, and going LOW when the button is pressed. If so, the behaviour of the sketch will be reversed, with the LED normally on and turning off when you press the button.

If you disconnect the digital I/O pin from everything, the LED may blink erratically. This is because the input is "floating" - that is, it will randomly return either HIGH or LOW. That's why you need a pull-up or pull-down resistor in the circuit.

Schematic

Code

const int buttonPin = 2;     // the number of the pushbutton pin
const int ledPin =  13;      // the number of the LED pin

// variables will change:
int buttonState = 0;         // variable for reading the pushbutton status

void setup() {
  // initialize the LED pin as an output:
  pinMode(ledPin, OUTPUT);
  // can asso used the reserved word LED_BUILTIN - pinMode(LED_BUILTIN, OUTPUT);
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin, INPUT);
}

void loop() {
  // read the state of the pushbutton value:
  buttonState = digitalRead(buttonPin);

  // check if the pushbutton is pressed. If it is, the buttonState is HIGH:
  if (buttonState == HIGH) {
    // turn LED on:
    digitalWrite(ledPin, HIGH);
  } else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
  }
}

Further Reading

Button
Logo